Cell Source Selection—
the Debate Continues
Council Meeting 2016

Stephanie Lee, MD, MPH- Fred Hutchinson Cancer Research Center
Juliet Barker, MBBS, MD- Memorial Sloan-Kettering Cancer Center
Ephraim Fuchs, MD- Johns Hopkins Hospital

Disclosures
The following faculty and planning committee staff have no financial disclosures:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juliet Barker, M.D., MBBS</td>
<td>Memorial Sloan Kettering Cancer Center</td>
</tr>
<tr>
<td>Ephraim Fuchs, M.D.</td>
<td>Johns Hopkins Hospital</td>
</tr>
<tr>
<td>Kim Wadsworth</td>
<td>NMDP</td>
</tr>
<tr>
<td>Kelly Buck</td>
<td>NMDP</td>
</tr>
</tbody>
</table>
Disclosures

The following faculty have the following financial disclosures:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Disclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephanie Lee, MD, MPH</td>
<td>Fred Hutchinson Cancer Research Center</td>
<td>One time advisory boards: Kadmon, BMS, Amgen Mallinckrodt supported travel</td>
</tr>
</tbody>
</table>

Learning objectives

At the conclusion of this session, attendees will be able to:

• List advantages of each stem cell source for certain clinical scenarios
• State recent clinical updates related to the use of each stem cell source for transplant
Session Overview

• Case study presented for each cell source
 – Stephanie Lee, URD
 – Juliet Barker, CBU
 – Ephraim Fuchs, Haplo

• Questions, Discussion

Adult Unrelated Donors

Stephanie J. Lee, MD MPH
Fred Hutchinson Cancer Research Center
November 12, 2016
Unrelated Donors

• More than 60,000 URD transplants performed since 1987
 – Longest survivor is 26 years from transplant
 – Abundant registry/international experience

• Benefits of URDs
 – Faster engraftment/lower rate of graft failure
 – Better immune reconstitution/less infection
 – (Lower risk of relapse)
 – Experienced center

Allogeneic Transplant Recipients in the US, by Donor Type

*2014 Data incomplete
1990-2014
EBMT Activity Survey
Europe only

Passweg J et al, BMT 2016; 51: 786-792

Gragert L et al, NEJM 2014; 371: 339-348
Engraftment (v. cord)

French transplant group
N=651 adult AML, NMA & RIC, 2002-2010

Engraftment (v. haplo)

<table>
<thead>
<tr>
<th></th>
<th>AML¹</th>
<th>Lymphoma²</th>
<th>AML³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1982 URD vs. 192 haplo MA or RIC 2009-2012</td>
<td>491 URD vs. 185 haplo RIC or NMA 2008-2013</td>
<td>88 URD PB vs. 52 haplo PB (matched) 2010-2015</td>
</tr>
<tr>
<td>Neuts</td>
<td>97% vs. 90% d30, p=0.02 (MA) 96% vs. 93% d30, p=0.25 (RIC)</td>
<td>97% vs. 94% d28, p=ns</td>
<td>12 vs. 16 d, p=0.002</td>
</tr>
<tr>
<td>Platelets</td>
<td>92% vs. 88% 6 mo, p=0.19 (MA) 93% vs. 88% 6 mo, p=0.24 (RIC)</td>
<td>89% vs. 63% d28, p<0.001</td>
<td>13 vs. 22 d, p=0.007</td>
</tr>
</tbody>
</table>

¹Ciurea et al, Blood 2015; 126: 1033-1040
²Kanate et al, Blood 2016; 127: 938-947
³Rashidi et al, BBMT; 2016; 22: 1696-1701
Infection (v. cord)
CIBMTR
N=1781 adults, AML/ALL in CR1/CR2, 2008-2011,

<table>
<thead>
<tr>
<th></th>
<th>URD</th>
<th>mmURD</th>
<th>UCB</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>930</td>
<td>283</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>ATG</td>
<td>35%</td>
<td>50%</td>
<td>21%</td>
<td><0.001</td>
</tr>
<tr>
<td>Bacterial</td>
<td>59%</td>
<td>65%</td>
<td>72%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Viral</td>
<td>45%</td>
<td>53%</td>
<td>68%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Fungal</td>
<td>10%</td>
<td>16%</td>
<td>18%</td>
<td>0.002</td>
</tr>
<tr>
<td>NRM</td>
<td>14%</td>
<td>27%</td>
<td>33%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Inf. death*</td>
<td>31%</td>
<td>40%</td>
<td>49%</td>
<td>0.002</td>
</tr>
</tbody>
</table>

* Primary or secondary cause of death by 1 year

Ballen K et al, BBMT 2016; 22: 1636-1645

OVERALL SURVIVAL
Multivariate analysis (RR [95% CI])
MUD: 1.0
mMUD: 1.27 [1.03, 1.57], p=0.03
Cord: 1.13 [0.96, 1.34], p=0.16
Overall p=0.07

MUD: 1.0
mMUD: 1.16 [0.86, 1.57], p=0.33
Cord: 1.79 [1.39, 2.88], p<0.0001
Overall p<0.0001

Ballen K et al, BBMT 2016; 22: 1636-1645
*p<0.0005

CIBMTR and Eurocord
N=736 adults>50, AML in CR1, 2005-2010

French transplant group
N=651 adult AML, NMA & RIC, 2002-2010
Unrelated Donors

- Results continue to improve:
 - Less chronic GVHD with bone marrow, post-transplant cyclophosphamide, ATG
 - Refined donor considerations
 - KIR
 - HLA-DP
URD PB + post HCT Cy

N=43
MA, matched related/unrelated PBSC + PTCy
0% grade III-IV acute GVHD
16% CI chronic GVHD

Pretreatment with anti-thymocyte globulin versus no anti-thymocyte globulin in patients with haematological malignancies undergoing haemopoietic cell transplantation from unrelated donors: a randomised, controlled, open-label, phase 3, multicentre trial

Inmar Walter, Tony Franceschi, Stephen Cumber, Felix Osbon, Gerald Cover, Mohamed Gabbita, Genevieve Gallaghene, Holly Kent, John Hancock, Stephanie Lee, John Moore, Thomas Neve, Gilles Piquard, Jean Roy, Kirk K Schiller, Daniel Souque, Lynherd Terlev, on behalf of the Canadian Blood and Marrow Transplant Group

Lancet Onc 2016; 17: 164

N=203, MA and RIC
Freedom from IST through 12 mos
37% vs. 16%, OR 4.25, p=0.0006

ASH | 58th Annual Meeting & Exposition
San Diego, CA • December 3-6, 2016

505 A Prospective Randomized Double Blind Phase 3 Clinical Trial of Anti- T Lymphocyte Globulin (ATLG) to Assess Impact on Chronic Graft-Versus-Host Disease (cGVHD): Free Survival in Patients Undergoing HLA Matched Unrelated Myeloablative Hematopoietic Cell Transplantation (HCT)

Robert J. Soiffer et al
Case 1

34 y/o man
- Ph+ ALL with CNS involvement
- recent fungal pneumonia, on anti-fungal treatment
- weight 120 kg
- eligible for a GVHD prophylaxis trial where donor = 8/8 or 7/8 unrelated donor

- Infection
- Weight
- Eligible for clinical trial

Case 2

64 y/o man
- myelofibrosis after a prolonged history of polycythemia vera
- splenomegaly
- no response to platelet transfusions, anti-HLA antibodies present
- anticoagulated because of a recent pulmonary embolus

- Engraftment concerns
Case 3

24 y/o woman
- CMML s/p induction chemotherapy
- 4% blasts in bone marrow
- CMV + with h/o reactivation and current viremia

➢ High risk of relapse
➢ High risk of CMV infection

Summary

• Unrelated donors are the most common alternative donor grafts
• More have been performed, and by more centers for longer, than other graft types
 – Registry data vs. single center data
• URD advantageous in cases of
 – Heavier recipients/higher risk of graft failure
 – Higher risk of serious infections
 – (Higher risk of relapse)
• Randomized trials are needed
Cell Source Selection- the Debate Continues

HLA-haploidentical (haplo) donors

Ephraim Fuchs, MD, MBA
Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
fuchsep@jhmi.edu

Outline

• Case presentation
• Just what is an HLA-haploidentical donor?
• Advantages and disadvantages of haplo donors
• Comparative outcomes of haplo stem cell transplantation
Case presentation

- 58♀ presents to emergency room with fatigue
- WBC 108K, Hb 5.9, Plts 11,000
- Diagnosis: AML with FLT3 internal tandem duplication
- Patient achieves molecular complete remission with cytarabine and daunorubicin
- Evaluation of potential family donors:
 - HLA-matched brother: 65 yo, WBC 4.6, Hb 14, Plt 160K
 - Antibody against HLA-B51 and –DR11 at +CDC XM
 - Antibody against HLA-DQ3 with MFI=1000

What is an HLA-haploidentical donor?

- An HLA-haploidentical (haplo) donor is a RELATIVE who shares, by common inheritance, one chromosome 6 with the patient and who is mismatched for a variable number of HLA genes (0-6) on the unshared chromosome 6
- Examples of haplo donors (likelihood of being haplo)
 - Biological parents or children (100%)
 - Sibs or half sibs, aunts or uncles, nieces or nephews, grandchildren (50%)
 - Cousins (25%)
Pros and cons of haplo donors

<table>
<thead>
<tr>
<th></th>
<th>10/10 MUD</th>
<th>Haplo</th>
<th>Cord</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor availability</td>
<td>20-80%</td>
<td>90-95%</td>
<td>100%</td>
</tr>
<tr>
<td>Time to donation</td>
<td>Possibly slow</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td>Graft failure</td>
<td>Lowest</td>
<td>Higher</td>
<td>Higher</td>
</tr>
<tr>
<td>GVHD</td>
<td>Lowest</td>
<td>Highest</td>
<td>Medium</td>
</tr>
<tr>
<td>Recurring cell source</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cost</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

HaploBMT circa 1990

Poor outcome with heavy mismatching

Anasetti et al., Hum Immunol 1990
Severe GVHD with single mismatch in GVH direction

C Anasetti et al. Human Immunology, 29:79, 1990

Selective allogeneic depletion with high dose, post-transplantation cyclophosphamide (PT/Cy)

T-cell activation

T-cell proliferation

Proliferating ALLOREACTIVE cells are killed
Non-proliferating non-alloreactive cells are spared

anti-CMV
anti-HSV
anti-CMV
anti-HSV
Haplo + PTCy versus MUD for AML

No difference in survival

![Graphs showing cumulative incidence and survival](image)

S Ciurea et al. Blood 126:1033-1040, 2015

Haplo versus matched sib for lymphoma

Same outcome with less chronic GVHD

![Graphs showing cumulative incidence and survival](image)

Increasing HLA mismatch →
Improved EFS without ↑ GVHD

Overall survival (%)

Event-free survival (%)

HLA-DRB1, but not –DPB1, mismatching improves survival
HaploBMT with PTCy

Conclusions

- Post-transplantation cyclophosphamide nullifies the detrimental impact of HLA mismatching on outcome of allogeneic SCT
- HLA-DRB1 mismatching in the graft-versus-host direction is associated with improved outcome of haploBMT + PTCy

Case presentation

- 58♀ presents to emergency room with fatigue
- WBC 108K, Hb 5.9, Plts 11,000
- Diagnosis: AML with FLT3 internal tandem duplication
- Patient achieves molecular complete remission with cytarabine and daunorubicin
- Evaluation of potential family donors:
 — HLA-matched brother: 65 yo, WBC 4.6, Hb 14, Plt 160K
 — Antibody against HLA-B51 and –DR11 at +CDC XM
 — Antibody against HLA-DQ3 with MFI=1000
Donor selection issues in this case

- **Time to donation**
 - AMLs with FLT3 ITD are rapidly progressive
 - Risk of relapse while securing adult unrelated donor

- **Health of potential donors**
 - 6.3% cumulative incidence of donor-derived malignancy with donors>60 years old
 - AML mutation panel of sibling’s blood identified clonal hematopoiesis of indeterminate prognosis (CHIP)

- **Anti-donor HLA antibody**
 - Two siblings ruled out due to + cytotoxic XM
 - Low level anti-DQ antibody does not preclude donation

- **Benefit of HLA-DRB1 antigen mismatching**
 - Patient’s 35 year old son was chosen as the donor
Final comments

- Alternative graft sources have never been compared directly in a prospective, randomized trial, therefore.
- There is no evidence that haplos are better than cords or adult unrelated donors, or vice versa, therefore.
- I strongly encourage transplant centers to enroll patients onto the first ever prospective, randomized trial comparing two different sources of stem cells: BMT CTN 1101 (cord v haplo)

QUESTIONS