

Learning Objectives

- · Review the types of testing for hematologic malignancies
- · Increase familiarity with certain disease specific molecular tests
- · Summarize clinical trials assessing molecular markers

COUNCIL MEETING 2013: SHARING OUR PASSION FOR LIFE

Objectives

- Review the types of testing for hematologic malignancies
- Describe the rationale for molecular testing
- Increase familiarity with certain disease specific molecular tests
- AML disease stratification

Testing for Heme Malignancies • Histology/ Morphology - What the cells look like • Immunohistochemistry (IHC) - Staining the cells to identify specific markers • Flow cytometry - Looks at individual cells based on staining for specific markers • Cytogenetics - Chromosome analysis • FISH - Targeting specific chromosomes • Molecular studies - Identifying abnormal gene products Most sensitive

Flow and Cyto CD19+/CD5+

Clonal population of B- cells expressing CD19 and CD5 and kappa restriction

Conventional cytogenetics showing monosomy 7 and t(8;13)(q24.3;q14)

kappa clonal ex

KAPPA FITC

Red signal: ABL gene on a normal chromosome 9 Green signal: BCR on a normal

chromosome 22

Yellow (combined): BCR/ABL fusion on the Philadelphia chromosome t(9;22)

Yellow signal: Trisomy 12 in a patient with CLL

Polymerase Chain Reaction

 Method to rapidly and highly specifically amplify DNA fragments

- Advantages
 - Common, fairly inexpensive
 - Rapid, sensitive and specific
- Disadvantages
 - Requires knowledge of the specific nucleotide sequence
 - Sensitivity may result in false-positive results

Other Techniques

- · Gene Expression Profiling
 - Microarray technology to identify a molecular signature of a tumor
- Proteomics
 - Microarray technology to identify protein expression profiles of

expression profiles of tissue/cell type

hancer J(1-4) D(1-12) V(1,2,...,n)

11q13 breakpoints

franslocation chromosome t(11;14)(q13;q32)

Sensitivity and Specificity

- Sensitivity
 - The ability to detect one malignant cell in many normal cells (the needle in the haystack)
- Specificity
 - The likelihood that the test can discriminate between malignant and normal cells

Maximum Sensitivity

Technique	# of blasts required/100,000 cells to detect disease
Microscopy Standard Expert	5000 blasts 1000 blasts
Karyotype analysis	5000 blasts
Flow Cytometry	10 blasts
Polymerase Chain Reaction (PCR)	0.1 blasts

Purpose of Molecular Tests

- Diagnostic accuracy
- Prognostic markers to predict outcomes
- · Monitor for minimal residual disease

Prognostication

Normal karyotype AML with or without Flt3-ITD mutation

Bienz M et al. Clin Cancer Res 2005;11:1416-1424

BCR/Abl

- Fusion protein that results in increased activity of a tyrosine kinase
- Present in CML, ALL (30 -35% adult B-cell), and some AML

• Can be followed quantitatively with a Major Molecular Response (MMR) determined as $\leq 0.1\%$ BCR-ABL (ratio of BCR-ABL/BCR)

IgH and T-cell Receptor Gene Rearrangements

- Diverse gene product to allow for wide immunity
- Mutations result in clonal population
- May have false positives due to recovery post-transplant or ongoing infection

CEBP-α

- On chromosome 19q
- Normal function: Transcription factor for maturation of granulocytes
- Mutated in 15 20% of patients with AML
- Improved outcomes for patients with this mutation, independent of other mutations

FIt3

- Chromosome 13q
- Normal function: tyrosine kinase that is important for proliferation and differentiation of hematopoietic progenitor cells
- Mutated in 30 40% of AML patients
 - ITD, D835 point mutation, overexpression without mutation
- Uncontrolled proliferation leads to inferior overall and disease-free survival

NPM1

- On chromosome 5q
- Normal function: controls genomic stability
- Mutation in 50 60% AML
 - Either insertion or deletion
 - Increased in women
- Sole mutation present, improved outcomes
 - Outweighed by other negative mutations like FLT3

MLL

- On chromosome 11q
- Normal function: encodes enzyme that regulates homeostasis
- Mutation in 7 8% of AML patients as a partial tandem duplication
- Decreases overall survival

IDH1 and IDH2

- IDH1 on Chromosome 2q
- IDH2 on Chromosome 15q
- Normal function: critical to the Krebs cycle
- Mutations in 15 30% AML patients
- Results in increased expansion of HSCs and impaired differentiation

BCL-1 (CCND1)

- On chromosome 11q
- Normal function: cell cycle regulation
- In Mantle cell lymphoma t (11;14)
 - Moved upstream of IgH gene (chromosome 14)
- Mutation leads to dysregulated cell cycle and proliferation

BCL-2

- On chromosome 18q
- Normal function: inhibit apoptosis and modulates cell cycle progression
- In Burkitt's lymphoma, moves upstream of IgH t(14;18)
- Overexpression leads to prolonged cell survival

BCL-6

- On chromosome 3q
- Normal function: represses transcription
- Often overexpressed in DLCL
- Mutation leads to increased proliferation

TP53

- On chromosome 17p
- Tumor suppressor that prevents uncontrolled cell growth
- Mutation of 17p found in many cancers
 - CLL, DLCL, solid cancers

CIBMTR Disease Forms

Info on molecular testing now being collected

- AML: CEBP-α, FLT3-D835 point mutation, FLT3-ITD mutation, IDH1, IDH2, NPM1, MLL
- ALL: BCR/ABL, TEL-AML/AML1
- MDS: ASXL1, JAK2, ETV6, EZH2, P53, RUNX1
- Lymphoma: BCL-1 (CCND1), BCL-2, BCL-6, IgH, TCR

BMT CTN 1202

- Biomarker protocol
- Obtain samples to correlate molecular signatures with clinical outcomes of transplant
 - DNA, RNA, and Protein
- Data collection for post-transplant complications
 - Acute GVHD, chronic GVHD, lung injury, TMA, VOD, serious infections, relapse, death

Summary

- Molecular testing is a powerful tool
 - Guide treatment decisions
 - Can monitor for low levels of disease
- Constantly evolving field with new discoveries
- Impact of various markers requires large populations of patients to determine true importance

