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Learning objectives

e At the conclusion of this session, attendees will be able to:

* Define diseases that have the potential to be treated using gene
therapy strategies

* Analyze current strategies and methodologies such as CRISPR and
viral vectors being used in gene therapy

« Evaluate how these gene therapy strategies are being applied in
current clinical trials
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Gene Therapy Medicinal Products

EX vivo
genetically modified
human cells

cell

1) Isolation of the
target cells
(autologous or
allogeneic)

2) Gene transfer

i

\\

3) Re-Infusion
of the genetically modified cells

.

In vivo delivered

vectors, nucleic acids,
replicating micro-organism
(not including live vaccines)

—a—={{{

Direct application:

viral vector

non-viral vector @
naked DNA @‘

replicating rec. micro-organism
(adenovirus, Salmonella)

Chris Baum, David Williams



Limitations of allogeneic transplant for genetic blood disease

Healthy matched donor " Problems:

-

O Most patients lack a
matched sibling

- donor
E— “ 0 GVHD

Well
Sick prepare ; Transplant
the & A

patient |} |




Gene therapy is an alternative to allogeneic transplant using
the patient’s own cells

Advantages:

O Patient is own donor
O No GVHD

O \Vector integrates
into the DNA of the
cell, and passes the
gene to all progeny

patient |} |

the A
1\-. 1 _ !
% W é .




Retroviruses are used for ex vivo gene transfer into HSC

Family  Subfamily

Orthoretrovirinae

Retroviridae <

Spumaretroviranae e———

Parvovirinae

Parvoviridae

Densovirinae

Genus

Alpharetrovirus

Betaretrovirus
Gammaretrovirus
Deltaretrovirus

Epsilonretrovirus

Lentiretrovirus

Spumaretrovirus (foamy)

Amdovirus
Bocavirus

Dependovirus

Erythrovirus

Partetravirus

Parvovirus

Species

Ex: mouse mammary
tumor virus (MMTV)

Ex: murine leukemia
virus (MulLV)

Ex: human T lymphotropic
virus (HTLV)

Ex: human
immunodeficiency
virus (HIV)

Ex: adeno-associated virus

Ex: Parvovirus B19

Integrate
into DNA

transcriptional
start sites

within
transcriptional
units

Brevidensovirus, Contravirus, Densovirus, Iteravirus, Pefudensovirus




Simplified retroviral life cycle

Viral genome (RNA)
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Gene transfer vectors are made to avoid replication
competent retrovirus (RCR) by split packaging

Gene of interest
W
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gene

therapy

vector budding
gag-pol env ® % ®
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Packaging cell line e.g. Human embryonic kidney 293T adherent cell line



Vector transduces stem cells without RCR

Gene of interest

g Gene transfer (addition)—

=
C
=

» Genetic material is added to the cell

» Location is not controlled and is different
for each cell

» Insertion pattern varies depending on the
type of virus used

CD34+ hematopoietic
stem cell

uncoating



What is severe combined immunodeficiency (SCID)?

A congenital disease in which babies
are born without T lymphocytes

The first disease to be successfully

treated with long-term engraftment

of donor cells (Gatti 1968) B IR
David Vetter, by with X-linked SCID

Multiple genetic causes who lived in a bubble (1971-1984)

IL2RG (X-linked) with Dr. Bill Shearer (1937-2018)
ADA (adenosine deaminase)

) v gy == i
y/ i M138 $
) Pl & b
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Without treatment, death in the first year of life of infection

ADA SCID can be partially treated with enzyme replacement
therapy which is expensive, non-curative and requires lifelong
treatment

Standard treatment is allogeneic HSCT, can be performed without
conditioning



The groundwork for successful gene therapy arose from HSCT
for immunodeficiency

Retronectin

Sib BMT improves Early trials
for WAS yRv . of GT for
Sib BMT for (Parkman) tr:nsfer efficiency ADA
ADA def - of murine defici
into , eficiency
(Parkman) retroviral
URD BMT mouse . . far in PBL
Sib BMT for CGD BM cells (Williams) (Bla?ese,
for SCID-X1 (Westminster) (oyner) pordignon,

Kohn, Onodera)
(Gatti) \ \/ /X/
\ %
- 76-80 86-90 91-95 96-00 01-05 05-10 11-15

IL2ZRG
ADA def ADA gene WAS gene
as cause cloned, discovered
cloned
of SCID (Orkin) CYBB cause of (Derry)
(Giblett) (Wiginton) identified as SCID-X1
component  (Noguchi)
Gene for of NADPH (Puck)
XCGD cloned oxidase

(Royer-Pokora) (Dinauer)



Gene therapy for primary immunodeficiency has led the way

Disease Gene | Vector | Year Groups Efficacy?
Adenosine ADA | y-RV 2002 Milan Yes
deaminase 2009 UCLA/NIH
deficient SCID
X-linked SCID IL2RG | y-RV 2002 Paris, Yes

2004 London




Introduction of low dose conditioning propeled the success
of gene therapy for ADA SCID

Reference

Vector

Bu dose

Significant
Gene

Off ADA?

1995 Bordignon et al

1995 Kohn et al

1996 Hoogerbrugge
et al

2012 Candotti et al

Rivat et al Hum Gene Therapy 2012, includes personal communications

No 0
No
No
No 0

Marking?
No

No
No

No

No

No
No

No



Introduction of low dose conditioning propeled the success
of gene therapy for ADA SCID

Reference Vector | Stop | Budose Significant | Off ADA?
ADA? Gene
Marking?
0 2

1995 Bordignon etal vy-RV No No No
1995 Kohn et al v-RV No 0 3 No No
1996 Hoogerbrugge y-RV No 0 3 No No
et al
2012 Candottietal  y-RV No 0 4  No No
2002  Aiuti et al v-RV Yes 4mg/kg 2 Yes 1/2
2009 Aiuti et al v-RV Yes 4mg/kg 18 Yes 15/18
2011b Gaspar et al v-RV Yes 4mg/kg 8 Yes 4/8
(or Mel)
2012 Candottietal  y-RV Yes 4mg/kg 14 Yes 10/14

Rivat et al Hum Gene Therapy 2012, includes personal communications



Gammaretroviral gene therapy for ADA SCID is safe and
effective

[ —_—
MND MND A Absolute lymphocytes - :E;

virus LTR w ADA virus LTR

= = e

10 pts received with autologous CD34+
BM cells transduced with MND-ADA-
YRV after 4 mg/kg busulfan
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Shaw et al JCI 2017



First generation gene therapy for X-linked SCID (SCID-X1) was
efficacious but caused insertional oncogenesis

Gammaretroviral vector
(with viral enhancers)
(Paris, London)

P Wiy
R |US 1 R |US
sD SA

e Viral promoter (Moloney leukemia
virus) with strong expression of the
IL2RG transgene

 Transduced autologous CD34+ bone
marrow cells, infused without
conditioning

e Excellent T cell reconstitution,
17/18 long-term survivors, no
opportunistic infections

Hacein-Bey-Abina et al Science 2003; Hacein-Bey-Abina et al
JCI 2008; Howe et al JCI 2008; Hacein-Bey-Abina et al NEJM
2010; Gaspar et al Sci Transl Med 2011

Safety concerns

Insertional oncogenesis:

5/20 developed T cell leukemia at
2-5.6 years post-GT

1/20 developed T cell ymphoma at
15 years post-GT

1 patient died of leukemia

5 patients treated and in remission
with normal T cells

Occurred due to insertion near and
activation of oncogene (LMO2 in 5 of 6
cases)

MN N

—p 41,253 44,218 46,229 54,614 66,467 66,867 71,646 76,883

TSS
LMO2 {t {



Gammaretroviral vectors were associated with insertional

oncogenesis in multiple diseases

Disease Gene Vector | Year Groups Efficacy? Safety?
Adenosine ADA 7-RV 2002 Milan Yes Yes
deaminase 2009 UCLA/NIH
deficient SCID
X-linked SCID IL2RG 7-RV 2002 Paris, Yes No

2004 London 6/20 ALL

1/20 T lymphoma

X-linked CYBB 7-RV 2006 Frankfurt | Transient | No
chronic (silencing) | 2/2 MDS
granulomatous
disease
Wiskott-Aldrich | WAS 7-RV 2010 Hannover | Yes No
syndrome 7/9 ALL/AML




Possible strategies to avoid insertional oncogenesis

Strategies
Modify vector - delete strong enhancers
- use weak cellular
Gene
addition promoter

- insulators

Change vector class - lentiviral vector



Can modification of the SCID-X1 vector retain efficacy and
improve safety?

. (ad SIN-yRV
Previous yRV ﬂ{ R us EFS IL2RG @ ﬂl R |usps IRV
SD (self-inactivating)
(David Williams, Adrian Thrasher, Christopher Baum) Viral enhancers
deleted
SCF 3 rounds of transduction in
- No sibling IL3 retronectin coated bags
donor TPO
- No matched autologous Flt3L \l, \l, \l, Infuse
unrelated BM harvest | fresh
donor OR -
: CD34+ 24h 24h 6h
-active .
selection -
treatment-
resistant B
infection at d-4 d-2 d-1 do
diagnosis
NO CONDITIONING
Boston (Pai, Notarangelo), Los Angeles (Kohn, DeOliveira), Cincinnati (Marsh, Malik), Paris (Hacein-
Bey-Abina, Cavazzana, Fischer), London (Thrasher, Gaspar) O
IND #14067, Sponsor David A. Williams, NCT01129544 T
Funding: NIAID U01-Al087628 (Williams/Pai) LAEH

National Institute of
Allergy and
Infectious Diseases

Vector produced by Cincinnati Children’s Hospital Medical Center

[ranslational Research Program
.

ﬂau‘:uﬁlupisma. (XX} ®



Robust reconstitution equivalent to previous vector

CD3 count

CD3+ cells/microliter

Copies/cell in CD3+

6000+

4000

20004

e

—)

0'@_1“;!4‘ . T T T T T T T T 1
<3 0 3 6 9 12 15 18 21 24 27 30 33 36

Months post GT

® Patient1 e Patient4 © Patient7 Patient 10
O Patient2 e Patient5 O Patient8 < Patient 12
® Patient3 © Patient Patient 9 Patient 13

Vector copies in CD3

4-
3-
2-
1.
0 3 6 9 121518 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
Months post GT
O Patient 2 Patient 10
O Patient 6 < Patient 12
O Patient 8 Patient 13
O Patient 8b

<0.7 =20.7 <0.7 20.7
o 5000 i % 300
£ 4000 n S
O 3000 = 200 -
‘é) 2000- S
> . Sam o 1001 g m
§ 300/ = mguE
g 200 £ 15
(] (7))
(99)] 4
D 100{ g < ol .=
O o= T
Y A o A A
l—Q. ‘,lQ. ‘9‘ qQ
=~ > A ~
D
. p=0.28
3 E & 10/13 patients
= o 0
z 0% o, e successful
fedg S E
< Tag® o % * . .
FERUN o MFGye Kinetics of T cell
S . * SIN-yc reconstitution
I T I I I I . .
que‘@q'\ A T similar between
i ¥ Months from Gene Therapy vectors

Hacein-Bey-Abina, Pai et al NEJM 2014 and unpublished



SIN-YRV appears to be safer than yRV

Insertion pattern of SIN-yRV Proportion of insertions near cancer-
still typical for yRV causing genes decreased in SIN-yRV pts

P=0.003
MFG-yc SIN-yc 0.08
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Frederic Bushman, University of Pennsylvania

(studies of all sites including European patients) Hacein-Bey-Abina, Pai et al, NEIM 2014 and updated



Possible strategies to avoid insertional oncogenesis

Strategies
Modify vector - self-inactivating format
- use cellular promoter
Gene .
S ddition - insulators

Change vector class - lentiviral vector




Next generation trials all use lentiviral vectors (US only)

ADA SCID X-linked SCID Wiskott- X-linked
Aldrich CGD
Promoter EFS EFS Human WAS | Chimeric
1.6kB myeloid
specific

Codon
optimized?

Frozen cells?

Year open 2013 2016 2011 2012 2017 2011 2014
Centers UCLA, NIH NIH St. Jude, @ Boston, Boston UCLA,
UCSF, UCLA NIH,
Seattle Boston
N treated 20 10 8 9 2 5 6
Longest ~5y ~2y >5y ~2y 0.5y S5y 2.7y
follow-up

Efficacy? Yes

Oncogenesis? No

Unpublished data, Kohn, UCLA; Sorrentino, St. Jude/Cowan, UCSF; Pai/Williams, Boston; Malech, NIH



What about gene editing?

Gene editing methods seek to modify or repair endogenous
genes, rather than adding a new copy of the relevant gene.

Advantages of editing over addition:

1. Regulation in native context
2. Avoid insertional oncogenesis

Strategy:
Target a double stranded break (DSB) to gene of interest
Repair the break

» with or without a donor template

» using nonhomologous or homologous recombination



Two double stranded break repair pathways

eNon-Homologous End eHomologous
Joining (NHEJ) Recombination (HR)
eInaccurate repair eAccurate repair
No donor template «Homologous donor
required template required

NHEJ:HR ratio depends on:

Cell type
Cell cycle phase
Presence of donor template

Donald B. Kohn



Different outcomes of gene repair

: M
Patient’s EENEEENEEENEEENEEENEE
Gene l
Site-Specific S;EN M=mutant bp
| E_ndonuclease: T N=normal bp
Zinc finger nuclease
Homing endonuclease |
TALEN
DSB)\/
CRISPR/Cas9 VY T Homology
/ | \ f Arms 1
N Gene cassett

Repair Template: EEEEEEEEE TTT T L]
No Donor Homologous Donor Gene Donor

! | }

Gene cassette M

IIIIIIIII:K:II\I/IIIIIIIIIII |||||||IIIII}IIIIIIIII|| HNENEEEEENEEENEEEEEEE

Gene Gene Gene
Disruption Correction Insertion
Donald B. Kohn



ZFN, TALENs and CRISPRs— Oh My!

A Zinc Finger

c|t|t|c]alc]r|s]7
clalafclr|c|a] T
( P 3

B TALEN

1rcrRNA

Artificial protein with
ZnF array, each
recognizing 3-4 nt,
connected to Fokl
nuclease

Artificial protein with
TAL effector protein
array, each recognizing
1 nt, connected to Fokl
nuclease

Bacterial system in
which the Cas9 protein
nuclease is guided to
target by bacterial
trcrRNA fused to guide
RNA (gRNA) with
specificity

Donald B. Kohn



Site-specific Gene Editing of Autologous
Hematopoietic Stem Cells for Gene Therapy

Autologous HSC
(BM, PBSC or CB)

Pre-stimulate
CD34 select| g/F/T (24-48 hr.)

Formulate Graft. Infuse.
(Fresh or Cryopreserve)

Electroporation

7 ™\

Site-Specific Endonuclease Homologous Donor
(as mMRBNA or RNP) (as Oligo or by Viral Vector)

Kohn & Kuo, JACI 2017.

Donald B. Kohn



Practical considerations in gene editing

Similar to gene addition

O Efficiency, efficiency, efficiency

O Delivery into appropriate cell
type

O Toxicity of the process to HSC,
maintaining pluripotency

O Ethical issues of somatic versus
germline manipulation

Distinct from gene addition

<~ Off target cutting

<> Delivery that is transient
yet effective (no
integration)

<> Need to deliver both the
nuclease and for HR,
donor template

<> If strategy is mutation
specific, need personalized
materials for each patient



On the road to gene therapy as
standard care

Dissemination
Gene editing — - g
-"m.

Pivotal trials
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UGSF Benioff Children’s Hospital
Oakland

Principals of gene therapy for
transfusion-dependent B-thalassemia and
severe sickle cell disease

m Mark Walters, MD

Children’s Hospital Oakland Research Institute
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UGSE Benioff Children's Hospitals

survival Probabhility

BMT for SCD at UCSF BCHO

1.0

0.8

0.6

0.4

0.2

0.0

Survival after BMT in Sickle Cell: Last Transplant only (N=19) Dec 2014

+ Censored

0

100% O.S.

93% E.F.S.

Oct 2000 - June 2018
N =26

URD -2
HaploID - 1
Unrelated UCB - 1
MMRD -1
Adults >20y - 4
Alive — 26/26

DFS — 25/26 (96%)

YEARS



How is a curative outcome depicted — HLA-ID
. sibling HCT?

0.8 1

0.6 4

] \V Complication incidence — Graft-versus-host disease
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, | | | , Successful outcome — overall survival

0 2 4 6 8 10
Time from transplant (years)

number of at-risk patients
-— BM 839 673 546 446 383 322 262 215 177 152 120
-=PB 73 49 41 33 28 24 14 10 9 7 5
--==CB 88 81 70 60 47 37 29 27 24 17 13

E Gluckman et al Blood 2017 129:1548-1556



Barriers to Transplant for SCD

Only 18% of families have HLA-ID sibling donor
Only 19% have well-matched unrelated donor

Clinicians do not refer patients because of
GVHD and risks of dying/long-term toxicity

The problem of graft rejection/recurrent SCD
has not been eliminated, especially in
mismatched donor HCT



‘Genomic’ therapies for hgb
disorders

Gene addition therapy (anti-sickling B-globin or y-globin) in
autologous HCT

Gene editing for y-globin expression in autologous HCT
Gene editing for sickle allele correction in autologous HCT

In vivo gene editing



Curative therapies —
fraction of ‘corrected’ HSCs

After allogeneic HCT, stable mixed hematopoietic chimerism is
sufficient to establish a curative effect

Benchmark of >20-25% donor myeloid chimerism has been
suggested, but there is inter-individual variability

Ideally, fraction of corrected HSPCs might be even higher

Fitzhugh CD, et al Blood 130:1946, 2017
Abraham A, et al BBMT 12:2178, 2017



Curative therapies —
stable mixed chimerism after allo-HCT

Patient 6
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How a curative outcome is depicted — Gene therapy

A

Vector Copy No./Diploid Genome

3.09

2.5

2.0

1.54

1.0+

0.5+

8 Vector copy no. in
transduced CD34+ cells
before infusion

CD15+ cells

Peripheral blood

VCN-2.0

T
3

T T
6 9
Months after Infusion of Transduced CD34+ Cells

T
12

T
15

w

Hemoglobin Concentration
(g/dl)

10.0+

5.0

0.0

Months after Infusion of Transduced CD34+ Cells

HbS 49%
HbATS7Q 48%

|.

Avg vector copy number (VCN) is
surrogate for fraction HSCs transduced

Dilution of HbS by 50%

IbA T87Q ~50%

Rebeil et al. NEJM 2017; 376:848-55



Modulators of HbF expression

GWAS observations

1. B-globinlocus (chromo 11)
2. HBS1L-MYB intergenic region (chromo 6)

3. BCL1la (chromo 2)

BCL11A
binding
site
B-Globin locus l
chrii 24321 & Sy AY = -
5§ 0§ — B T -
| | L | | L ! L
Fetal 1 Adult 3'HS

LCR HSs Embryonic




BCL11A is an epistatic suppressor fetal Hb

Data from: Xu J, et al. Correction of
sickle cell disease in adult mice by

interference with fetal hemoglobin
silencing. Science. 2011 334:993-6.

A Control

KLF1 » BCL11A
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SCD SCD/ Bcl11a ™
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How is a curative outcome depicted —
Hb F induction after gene editing?

-o— Control
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What is the HbF and F-cell induction target?

Unpublished, Daniel Bauer



Curative therapies — VCN

After vector transduction, VCN and % transduced HPSCs directly
proportional

VCN of 0.5 — 1 corresponds to 20-30% HSPC transduction

Stochastic nature of HSPC contribution to erythropoiesis challenges a
direct prediction

However, VCN and %transduction are important endpoints that should
be tracked in the short- and long-term

Thompson AA et al NEJM 378:1479, 2018



LentiGlobin gene therapy for transfusion-dependent B-thalassemia

LentiGlobin gene therapy contains autologous CD34+ HSCs transduced ex vivo with
the BB305 lentiviral vector encoding B-globin with a T87Q amino acid substitution

" Stem Cell Pre-infusion Transduced Stem
5 Collection Conditioning Cells Infused
©
< L
o
€ 3
(¢} E > »
N o
t ©
S o
S
a F Mobilization
% (with G-CSF + Busulfan
S plerixafor) & myeloablation
< apheresis

0 LentiGlobin DP manufacturing .
- £ : RN .
QS ' , @ + ALY - -
N 35 -~ - 2D Shen
= B .| ® Qe ® [  Ne
O ® S .

“ o S
£5 © ® =
o C
o § Select CD34+ Transduce with BB305 Cryopreserve, test

cells lentiviral vector and release DP

Locatelli, et al. EHA 2018. Abstract 1510.

2 years

follow-up

|

Evaluation for

Transfusion Independence
Weighted average Hb >9 g/dL without any

transfusions for 212 months
|

1
1
1
1

v

Long-Term Follow-
Up Study

46



HGB-204: 8/10 patients with non-B°%/B° genotypes achieved and maintain
transfusion independence

Median duration of transfusion independence to date of 33 months

(min — max: 16 — 38) in 8/10 patients Hb (g/dL)
At last study visit
1102 10.3
1104 | —TE 9.4
:o¢p 355 12.0
sblce . 353 12.5
1111* 34.7 13.5
1120 203 9.1
1117 10.7
1119 10.0
0 6 12 18 24 30 36 42

Months Post Drug Product Infusion

Time from treatment to last transfusion B Time from last transfusion to last follow-up

*Indicates male patients. Transfusion independence is defined as weighted average Hb >9 g/dL without any RBC transfusions for 212 months. Hb, hemoglobin

Rasko, et al. ISCT-EU 2018. Abstract 1. Data as of 7 March 2018
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HGB-204: 3/8 patients with B°/B° genotypes are free from chronic
transfusions

Time free from chronic transfusions (months) At ::?t itgl{do:}\?isit
1106 21.7 9.3
1103 10.3
0 6 12 18 24 30 36 42

Months Post Drug Product Infusion
Time from treatment to last transfusion B Time from last transfusion to last follow-up

Patients 1103 and 1123 achieved transfusion independence with a
duration to date of 14 and 16 months, respectively

* Indicates male patient
¥ Patient had a single transfusion for an acute event of cat scratch disease
Transfusion independence is defined as weighted average Hb >9 g/dL without any RBC transfusions for 212 months. Hb, hemoglobin

Rasko, et al. ISCT-EU 2018. Abstract 1. Data as of 7 March 2018
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Curative therapies — VCN

. Correlation between Blood HbAT37Q Level and VCN
in PBMCs at 6 Mo
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Peripheral blood VCN is higher in patients in Group B and C
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For Group A patients, medians (Q1, Q3) depicted; Group A patients with month 30 study visit (N=3)
VCN, vector copy number (vector copies/diploid genome)
Kanter, et al. EHA 2018. Abstract S836.
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Patients in Group B and C demonstrate higher HbA™’Q production
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For Group A patients, medians (Q1, Q3) depicted; Group A patients with month 30 study visit (N=2)
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Vector-derived hemoglobin in treated patients

92 71 85 87 94 114 9.1 12.8 11.0 14.2 11.7 9.8 9.2 Total Hb

B HbA (transfused)
B HbS

B HbA,

" HbF

- HbATS?Q

Hb (g/dL)

30 30 24 24 24 24 24 9 15 6 3 3 3  Last study visit (month)

Hb, hemoglobin; HbA, adult hemoglobin; HbA™’Q, vector derived hemoglobin; HbF, fetal hemoglobin; HbS, sickle hemoglobin

Kanter, et al. EHA 2018. Abstract S836. Data as of May 15, 2018 52



Cas9 for programmable gene correction
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How is a curative outcome depicted — Gene editing?
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In vivo and in vitro experiments

Do edited HSCs produce non-sickle hgb’7
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In vitro erythroid expansion
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In vivo experiments: xenografts

Are human edited cells true HSCs?
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Optimized sickle correction in xenotransplant model with plerixafor-mobilized HbSS

CD34+ cells
Correction - sSDNA HDR donor NHEJ - ssDNA HDR donor
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ssDNA donor directed editing had an average of 22.15% = 7.66% correction in marrow



Curative therapies — % allele
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Summary

LentiGlobin BB305 gene therapy shows promising results in TDT
LentiGlobin VCN strongly correlated with HbA™72 |evel

Clinical benefit in SCD has been appears to follow HbA™7Q |evels —
approach 50% non-HbS

The future of curative therapies that will have broad availability might
follow advances in gene therapy and genomic correction of the sickle

mutation in HSCs — availability of the treatment will be a limiting factor
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